The term grey cataract refers to all eye diseases marked by an opacity of the natural eye lens. 90% of all cases can be classified as an “old-age cataract”, which affects every person in the course of his/her life. The lens opacity generally becomes noticeable around the age of 60 years. In very rare cases there are other causes for a grey cataract:
- Inborn lens opacity
- Eye injury
- Medication intake
- Exposure to radiation
- Various eye inflammations
- Syndromes or diseases (e.g. morbus down, diabetes mellitus)

As the grey cataract is a disease, which progresses very slowly, the patient often does not feel severely impaired at first. His/her environment appears blurred, dull and misty, contrasts and colours seem more and more pale. Another frequent sign for a grey cataract is the problem of being easily blinded by light.

The diagnosis “grey cataract” can be determined easily – although only by an ophthalmologist – by means of a slit-lamp examination.

Only an operation can help
The grey cataract can only be treated by means of an operation. Depending on the degree of the lens opacity and depending on how severely you as a patient feel impaired, the ophthalmologist will advise you as to the optimal point in time for a cataract operation.

This operation is very safe today and takes a mere 20 to 30 minutes. Through a small incision the natural eye lens is broken up by an ultrasound instrument and then aspirated. After that, an artificial lens, a so-called intraocular lens is inserted in the eye. This intraocular lens also helps to correct other eye dysfunctions otherwise requiring spectacles.

As every other surgery, the cataract operation also entails the risk of complications (e.g., pain, infections, after-cataract, wound healing disorders, etc.). Your ophthalmologist will certainly inform you in detail about all risks and complications prior to the surgery.

The cataract operation is one of the most frequently carried out surgeries of all. It is now generally done on an ambulant basis. Only in cases where

في الفترة البصرية، يتم تشخيص الإصابة بمذهلة على طريق التغذية بالإصابة بالتغذية الناقصة من قبل الطبيب الأحيائي وأعراض العين.

العلاج يتم جراحيا فقط:
لا يوجد العلاج الإداري. يتضمن العلاج الجراحى
بالإضافة إجراء العملية الجراحية.

وينصح好き على درجة تحسن العدسة وعلى مدى الإعاقة البصرية الناجمة عن ذلك.

إن العملية الجراحية للعمر في يومنا هذا من الغاز والضغط فقط 20-30 دقيقة. يتم عبر قص صغير
ومؤشرة جراء تعديل الأمور.

ب舰队 العمودية تقييم عدسة العين الخبيثة، ومن ثم اكتشافها.

إحداث العين المختلفة
- ملامسات وألمات أخرى

(مثل: الإصابة الحذر ومتلازمة بارون)

في كل حالات لا يتضح المرض، بادئ الأمر من تقدم واصيف في الفترة البصرية، ونظام تتبع الطبي والإصابة بالإصابة بـ HRG، تظهر الصورة التي يراها المريض في البعد عبر واحة الحواس، تبدو وكأنها مفيدة. كما تظهر الظاهرة والأوان بإصابة بالإصابة بالإصابة بالعمى في معظم الأحيان هو حدوث ضعف تدريجي

الساعد (المياه البيضاء)

biصف تحت ما يسمى بالمياه البيضاء (الصورة العمياء) كن قرب العين (cataract G))

المنطق العلمي:
يرجى ملاحظة في عدة الأعيان:

الطبيعة.

تحت 90% من هذه الحالات عند المستور مع التقدم بالعمر، وتشمل
(الอาการ المفجى) حيث بعد حدوث

كانت عودة العين بعد coupon

عامة، تحسن حالة الحالات الأقل

نوعاً على سبيل أخر، منها: مع

تعيد العملية البصرية

مزج العين

نتيجة تناسب بعض الأمور.

العمليات الطبية على العين

الدافع الناجح عن النشاط

إحداث العين المختلفة
- ملامسات وألمات أخرى

(مثل: الإصابة الحذر ومتلازمة بارون)

down

بادات الإصابة بالعمر في

الحساسة

بجاه حالة في كل حالات

الصحفي ترميم العملية العدسة الإحيد (مطهرة) حدد

الإنسان، نكس، اختصار إنشاء

ال거리، ويبهبط بالبطيء

العين، ويروح وافية حول

24
medical or personal reasons prevent an ambulant operation, it is carried out on a stationary basis. In most cases, a local anaesthesia is applied, either by means of anaesthetic drops or an anaesthetic injection given behind the eye. General anaesthesia is only required in exceptional cases.

Special lenses have been developed for implantation to correct certain refractive errors or other dysfunctions. These do not only eliminate the need for spectacles, but they also have other advantages:

Multifocal intraocular lenses have the same effect as varifocals inside the eye. They produce several focal points, at least one of them for distant vision and another one for near vision. (2 focal points = bifocal, several focal points = multifocal). These lenses have different zones (visible as rings on the Illustration 1), which have various refractions and thus create sharp images from various distances.

The natural eye lens has the ability to expand and thus focus on near as well as distant images. This characteristic is called accommodation. Over the course of the years, however, this ability disappears. The idea behind the development of an accommodative intraocular lens revolved around exchanging the natural non-accommodative lens for an artificial lens, which can adjust to various distances. Unfortunately, clinical studies did not show the desired effect. Such a special lens cannot fully adjust to distant or near vision, so that the patient may still have to wear reading glasses.

In order to correct a strong corneal irregularity (Illustration 2), which is difficult to correct by means of spectacles, a so-called toric lens can be implanted into the eye.

Special yellow intraocular lenses (Illustration 3) are particularly useful for patients suffering from macula degeneration due to old age. The yellow colouring of the lens, which the patient does not notice subjectively, functions in the same way as sunglasses within the eyes and protect the already damaged retina from UV radiation.

Prof. Dr. Chris Lohmann (MD)
Dept. of Ophthalmology
Klinikum rechts der Isar
Technical University Munich
Sekretariat.Augenklinik-rdf@web.de

The text suggests that the development of these lenses aims at improving vision for patients with various eye conditions. The use of yellow lenses is mentioned as a benefit for those with macula degeneration.

In the context of the text, the description of the lenses highlights their potential to improve vision in specific scenarios, particularly for those with macula degeneration. The text also highlights the importance of accommodation in the natural eye and the challenges faced in developing lenses that can mimic this function. The reference to clinical studies indicates a focus on the effectiveness and potential benefits of these new lenses.